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SUMMARY

A domain decomposition method with Lagrange multipliers for the Stokes problem is developed and
analysed. A common approach to solve the Stokes problem, termed the Uzawa algorithm, is to decou-
ple the velocity and the pressure. This approach yields the Schur complement system for the pressure
Lagrange multiplier which is solved with an iterative solver. Each outer iteration of the Uzawa proce-
dure involves the inversion of a Laplacian in each spatial direction. The objective of this paper is to
e�ectively solve this inner system (the vector Laplacian system) by applying the �nite-element tearing
and interconnecting (FETI) method. Previously calculated search directions for the FETI solver are
reused in subsequent outer Uzawa iterations. The advantage of the approach proposed in this paper
is that pressure is continuous across the entire computational domain. Numerical tests are performed
by solving the driven cavity problem. An analysis of the number of outer Uzawa iterations and inner
FETI iterations is reported. Results show that the total number of inner iterations is almost numerically
scalable since it grows asymptotically with the mesh size and the number of subdomains. Copyright ?
2003 John Wiley & Sons, Ltd.

KEY WORDS: Uzawa’s algorithm; Stokes problem; incompressible �ows

1. INTRODUCTION

Linear systems arising from spatial discretizations of �uid mechanics problems grow rapidly
with the size of the problem. For large problems iterative solvers and parallel computing
are essential. To accelerate convergence of the iterative process, preconditioning of the entire
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system is required. Classical preconditioners approximate the inverse of the global operator;
however, this task is di�cult if the same problem is to be solved on multi-processors. One
approach is to decompose a domain into subdomains, so that the global system is decom-
posed into local systems. Local systems can either contribute to the global problem at each
iteration in a global iterative approach or can be solved independently with boundary condi-
tions imposed on the interface of the subdomains. For parallel computations, the objective is
to construct a preconditioner with a local decomposition and=or a coarse problem that still
provides parallel and numerical scalability, namely such that the speed-up of the computing
time is nearly proportional to the number of processors and that large-scale problems can be
solved in a similar number of iterations as small-scale problems.
The overlapping Schwarz methods proposed by Dryja and Widlund [1] have been success-

ful for this task (see also e.g. References [2, 3]). In Reference [4], an overlapping Schwarz
procedure was also used to solve the incompressible Navier–Stokes equations. Nevertheless,
these methods have some drawbacks because the overlap increases the interprocessor commu-
nication which decreases the parallel e�ciency. In addition, these preconditioners are more
di�cult to implement for complex three-dimensional problems. An alternative is to construct
non-overlapping methods.
In this work, we consider incompressible �uid �ows with very low Reynolds number leading

to the so-called Stokes problem. The Stokes problem are also encountered in incompressible
structures and is therefore of fundamental interest in engineering.
Non-overlapping domain decomposition solvers for the Stokes problem have been proposed

by several authors [5–9]. The methods published therein typically assume that the pressure
�eld across the interface is discontinuous, either because the mixed �nite-element discretization
uses piecewise constant pressure �elds, or because the pressure continuity across the interface
is relaxed.
Dual domain decomposition approaches where the velocity �eld on the interface is enforced

by Lagrange multipliers were investigated in References [5, 9]. These methods correspond to
standard �nite-element tearing and interconnecting (FETI) approaches [10], but it appears that
using the related standard Dirichlet or lumped preconditioners is not straightforward and might
lead to suboptimal convergence. In Reference [6], an additional coarse grid problem related
to constant pressure �elds per subdomains was included and a dual–primal FETI approach
[11] was applied.
In References [7, 8], primal domain decomposition methods closely related to the balancing

Neumann–Neumann [12] method were investigated for the Stokes problem. The method in
Reference [7] is related to hierarchical �nite elements and was extended to Navier–Stokes
problems in Reference [13]. In Reference [8] a balancing method with an additional coarse
grid of the subdomain constant pressures was proposed (primal counterpart of the work in
Reference [6]).
In Reference [5], the authors also present some results for an FETI-like method when the

interface pressure continuity is enforced, but the convergence is very poor due to the fact that
standard FETI preconditioners are no longer applicable in that case.
In the present work, we introduce and study an iterative solver that combines Uzawa

iterations for the pressure �eld while the velocity problem is solved by a standard FETI
approach. In this way, we do not have to relax the pressure continuity on the interface
and therefore we can use Taylor–Hood elements [14] to discretize the Stokes problem with
quadratic velocity �elds and linear pressure �elds continuous across elements.
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Applying Uzawa’s algorithm to the Stokes problem is common. It consists of �rst decou-
pling the Stokes saddle point problem into the Schur complement system for pressure and
second solving each component of velocity by inverting a Laplace operator. This approach suf-
fers from the fact that one solution of a symmetric positive-de�nite system of linear equations
for each velocity component must be calculated at each iteration. To address this problems,
Elman and Golub have proposed an approximate iterative solution [15]. This preconditioned
inexact Uzawa algorithm seems to be competitive with multi-grid and Krylov subspace meth-
ods [16]. The approach followed in this paper is however di�erent from [15]. Indeed, here
the Poisson problem is solved at every Uzawa iteration by FETI for which inherent parallel
and e�cient preconditioners can be used. In addition, this method is enhanced by reusing
the previously calculated search directions allowing additional reduction in computational
cost.
The remainder of this paper is structured as follows. In Section 2, the Stokes problem, the

variational form, the �nite-element discretization and the domain decomposition is described.
Uzawa’s algorithm is reviewed in Section 3. In Section 4, the FETI method is summarized
with and without reconjugasion. Results and comparison of the di�erent methods are reported
in Section 5.

2. THE STEADY STOKES PROBLEM

2.1. Governing equations

The steady creeping �ow of an incompressible (�=constant) Newtonian �uid with constant
dynamic viscosity in a driven cavity is considered.
To describe this �ow the Laplacian form of the incompressible Stokes equations is used.

In vector notation, the velocity vector u and pressure p satisfy

−��u+∇p = f in �

−∇ · u = 0 in �
(1)

with imposed velocity uD= e1 on the top boundary and no-slip Dirichlet u=0 elsewhere.
The vector e1 is the unit vector in the x direction. Let �∈R2 be a square domain with sides
�j; j= {1; : : : ; 4}.

2.2. Variational formulation

Introducing, L2(�) the space of functions which are square integrable over � and H1(�)
the space of functions v such that v∈L2(�) and ∇v∈L2(�) then

L2
0 (�) =

{
q∈L2(�)

∣∣∣∣
∫
�
q dA=0

}
(2)

H1
0 (�) = {v∈H1(�)| v|�i =0; i∈{1; 2; 3; 4}} (3)
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The variational form is: given f ∈H−1(�)2 �nd u∈ (H1
0 (�))

2 and p∈L2
0 (�) such that

a(u; v) + b(v; p) = L(v) ∀v∈ (H1
0 (�))

2 (4)

b(u; q) =−b(uD; q) ∀q∈L2
0 (�) (5)

where u+ uD is the velocity �eld and p is the pressure �eld.
In this context, the bilinear forms a and b and the linear form L are de�ned by

a(u; v) =
∫
�
�∇u · ∇v dA ∀u; v∈ (H1

0 (�))
2 (6)

b(v; q) =
∫
q div(v) dA ∀v∈H1

0 (�)
2
; ∀q∈L2

0 (�) (7)

L(v) =
∫
�
f · v dA− a(uD; v) (8)

2.3. Finite-element discretization

The continuous form of the Stokes problem is discretized in R2 using a �nite-element approx-
imation (uh; ph) to (u; p). The computational domain � is decomposed into K conforming
triangular elements

�=
⋃
K

�Tkh (9)

The discrete problem is then: �nd uh ∈Vh and ph ∈Wh0 such that

a(uh; vh) + b(vh; ph) = L(vh) ∀vh ∈Vh

b(uh; qh) = −b(uDh; qh) ∀qh ∈Wh0
(10)

where Vh and Wh0 are the Taylor–Hood approximation spaces [14] de�ned as

Vh = {vh|Th ∈ (P2(Th))2; ∀Th ∈Th}∩ (H1
0 (�))

2 (11)

Wh0 = {qh|Th ∈P1(Th); ∀Th ∈Th}∩L2
0 (�) (12)

Note that both velocity and pressure �elds are continuous over �. Let us denote by A the
discrete Laplacian and by Di the derivative matrix in each direction and fi the augmented
inhomogeneity for each direction which incorporates the boundary terms. The matrix form of
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the Stokes problem (10) is then



A 0 −DT1
0 A −DT2

−D1 −D2 0





u1

u2

p


=



f1

f2

0


 (13)

2.4. Domain decomposition

A non-overlapping decomposition of � into N subdomains is constructed such that

�=
⋃
s

��s (14)

For simplicity each subdomain is a square of size H ×H as shown in Figure 1. A set of
discrete equations is assembled by integrating the expression (6)–(8) over individual subdo-
mains. On each subdomain, the discrete Laplacian is denoted by A(s), the derivative operator
by D(s)i and the component of the nodal forces and boundary terms by f(s)i . Nodal values
of velocity are stored in u(s)i and nodal pressure values are stored in p. The restriction of p
on each subdomain is obtained by multiplication with an operator Q(s). The inter-subdomain
continuity condition for each velocity component is imposed through the construction of a
matrix B=[B(1) : : : B(Nsub)], such that

∑
NsubB

(s)u(s)1 = 0 and
∑

NsubB
(s)u(s)2 = 0.

The global system can be written in discrete form as

A(s)u(s)1 =f
(s)
1 − B(s)T�1 +D(s)

T

1 Q(s)p; s=1; : : : ; Nsub

A(s)u(s)2 =f
(s)
2 − B(s)T�2 +D(s)

T

2 Q(s)p; s=1; : : : ; Nsub

H

h

Figure 1. Computational domain with elemental and Subdomain decomposition.
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∑
Nsub
B(s)u(s)1 = 0 (15)

∑
Nsub
B(s)u(s)2 = 0

∑
Nsub
(D(s)1 u

(s)
1 +D

(s)
2 u

(s)
2 ) = 0

Introducing

A=




A(1) 0 : : : 0

0 A(2)

...
. . .

0 : : : 0 A(Nsub)




(16)

B= [B(1) B(2) : : : B(Nsub)] (17)

D1 = [D
(1)
1 D(2)1 : : : D(Nsub)1 ] (18)

D2 = [D
(1)
2 D(2)2 : : : D(Nsub)2 ] (19)

u1 =




u(1)1

u(2)1
...

u(Nsub)1




(20)

u2 =




u(1)2

u(2)2
...

u(Nsub)2




(21)

f1 =




f(1)1

f(2)1

...

f(Nsub)1




(22)
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f2 =




f(1)2

f(2)2
...

f(Nsub)2




(23)

The system becomes




A BT 0 0 −DT1
B 0 0 0 0

0 0 A BT −DT2
0 0 B 0 0

−D1 0 −D2 0 0



=




[
u1

�1

]

[
u2

�2

]

p



=




f1

0

f2

0

0




(24)

Let

U =




u1

�1

u2

�2



; A=




A BT 0 0

B 0 0 0

0 0 A BT

0 0 B 0



; D=




D1

0

D2

0



; F=




f1

0

f2

0




then [
A −DT

−D 0

][
U

p

]
=

[
F

0

]
(25)

The solution of this positive semi-de�nite system with zeros on the diagonal at degrees of
freedom associated with pressure and continuity enforced across inter-subdomains is di�cult.
This work presents a domain decomposition iterative solver to e�ciently solve the above
system (25).

3. UZAWA’S METHOD

In the context of a non-decoupled domain, a popular iterative method to solve the Stokes
problem is the Uzawa saddle-decoupling algorithm. This algorithm is based on constructing
a positive semi-de�nite problem for the pressure, i.e.

(D1A−1DT1 +D2A
−1DT2 )p= −D1A−1f1 −D2A−1f2 (26)
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by substituting the velocity vector in the velocity divergence equation. Once p is determined
the velocity is obtained by solving the viscous system

Au1 =DT1p+ f1 (27)

Au2 =DT2p+ f2 (28)

Because the matrix S=(D1A−1DT1 +D2A
−1DT2 ) is symmetric and positive-de�nite, the pressure

�eld can be solved using a preconditioned (M̃) conjugate gradient (CG) algorithm.
The Uzawa algorithm is summarized as

1. Initialize

p0 = 0

w0 =−D1A−1f1 −D2A−1f2

2. Iterate

yn = M̃
−1
wn

zn = yn −
n−1∑
i=0

ynTSzi

ziTSzi
zi

�n =
znTwn

znTSzn

pn+1 =pn + �nzn

wn+1 =wn − �nSpn

Note that the inversion of two Laplace operators, A, is required at each pressure iteration
when the S matrix operates on a vector and therefore a nested elliptic iteration solver must be
used. Furthermore, the initialization step also involves the inverse of the A matrix. Since this
operation is symmetric, positive-de�nite it is also solved using a conjugate gradient iteration
solver. Clearly the reduction of the number of iterations of the nested elliptic iterations reduces
signi�cantly the computational cost. The FETI solver is ideal to reduce the cost of the inner
iterations. Herein, it is proposed to use the FETI solver as well as a reconjugasion method
for these inversions.
The advantages of Uzawa approach are three-fold: �rst, a CG algorithm can be used to

solve the pressure problem, second the outer iterations are independent of the discretization
size (h) [16], third, an excellent preconditioner, M̃ , for the pressure system is this pressure
mass matrix [17]. Furthermore, it was shown in Reference [3] that the number of Uzawa
outer iterations is always less than other iterative domain decomposition methods. Therefore,
the Uzawa algorithm is the baseline that is improved in this work.
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4. REVIEW OF THE FETI METHOD

4.1. FETI and its preconditioners

A domain decomposition is applied for the Laplace operator. Therefore, at each iteration, the
inversion of this operator is performed using the FETI method. The resulting system, at each
iteration, is written in a generic block form as

[
A BT

B 0

][
�

	

]
=

[
g

0

]
(29)

Eliminating the �eld solution (�) for the above equation leads to the interface problem for
	 also known as the dual Schur complement problem. To be more precise

�(s) =A(s)+(g(s) − B(s)T	)− R(s)�(s) (30)

where A(s)
+
is a generalized inverse of A(s). For all semi-inde�nite sub-systems, R(s)�(s) is

added to each component of velocity where R(s) are the associated �oating modes of that
subsystem s and �(s) are the amplitudes. The additional unknowns �(s) are determined such
that the interface �uxes are in equilibrium with the right-hand side g(s), i.e. such that the
subdomain equilibrium problem is well posed R(s)

T
(g(s) − B(s)T	)=0 . Note that A(s) has a

null space R(s) equal to 1 corresponding to the constant �oating mode. This latest fact reduces
the computational cost signi�cantly because R(s) is not calculated nor stored.

[
FI GI

GI
T 0

][
	

�

]
=

[
d

e

]
(31)

FI =
Nsub∑
s=1
B(s)A(s)

+
B(s)

T
(32)

GI = [B(1)R(1) : : : B(Nsub)R(Nsub)] (33)

�= [�(1) · · · �(Nsub)] (34)

d=
Nsub∑
s=1
B(s)A(s)

+
g(s) (35)

e= [R(1)
T
g(1)] · · · [R(Nsub)

T
g(Nsub)] (36)

The constraint GT	= e ensures that g(s) ∈ rangeA(s) for all s=1; : : : ; Nsub:
The construction of this problem is motivated by the use of a CG algorithm, which allows

for an iterative solution. A projector is applied to force 	 to belong to the range of A for all
iterations.
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The FETI method iterates on 	 to solve the interface problem (31). In brief the method is
a preconditioned conjugate gradient solver with two projector steps at each iteration to handle
the self-equilibrium constraints. The projector is orthogonal to Ker(GTI ). It is de�ned by

P= I −GI (GTI GI)−1GTI (37)

such that at each iteration GTI (	
n − 	n−1)=0.

To satisfy the original constraint which is GTI 	= e, the Lagrange multiplier 	 is split into
two components

	=	0 + P	n (38)

where 	0 satis�es the GTI 	
0 = e constraint and 	n is the solution of a symmetric positive

semi-de�nite problem

PTFIP	n=PT(d− FI	0) (39)

More information about the original FETI algorithm is found abundantly in literature
[10, 18, 19].
This algorithm can be summarized as

1. Initialize

	0 =GI (GTI GI)
−1e

w0 = PT(d− FI	0)

2. Iterate

yn = PF̃
−1
I wn

zn = yn −
n−1∑
i=0

ynTFIzi

ziTFIzi
zi

�n =
znTwn

znTFIzn

	n+1 =	n + �nzn

wn+1 =wn − �nPTFIpn

The above algorithm includes a preconditioner of the interface system to ensure scalabi-
lity when the number of elements and=or the number of subdomains is increased. A brief
description of the preconditioner of the interface compatibility follows.
Two preconditioners have been introduced and studied to precondition the dual operator FI

[10]. The �rst preconditioner is based on the subdomain Schur complement which requires to
solve local Dirichlet problems. Each subdomain viscous operator matrix is �rst partitioned as

A(s) =

[
A(s)ii A(s)ib

A(s)ib A(s)bb

]
(40)
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where the subscript i and b denote the interior and subdomain boundary degrees of freedom,
respectively. The subdomain Schur complement can be written as

S(s)bb =A
(s)
bb − A(s)Tib A

(s)+

ii A(s)ib (41)

The resulting Dirichlet preconditioner is given by

F̃−1
D =

i=N∑
i=1
Bi


 0 0

0 S(s)bb


BTi (42)

To avoid solving the local Dirichlet problems a lumped preconditioner has been introduced.
This computationally more e�cient preconditioner can be written as

F̃−1
L =

i=N∑
i=1
Bi


 0 0

0 A(s)bb


BTi (43)

In this study, only the Dirichlet preconditioner is used.

4.2. FETI for multiple right-hand sides: the reconjugasion

In this work, the FETI method is used at every Uzawa iteration on the pressure to solve the
decomposed Laplacian problem. In other words, for a given estimate of the pressure p in
the outer Uzawa iteration, the FETI method will iterate on the interface �exibility problem
(31) to compute the Lagrange multipliers 	 on the interface. Hence, at every Uzawa outer
iteration, the same interface problem (31) must be solved with di�erent right-hand sides.
When factorization techniques are used to solve linear systems, the factorization of the

operator must be performed only once. It can then be used to solve for di�erent right-hand
sides by forward and backward substitution. When iterative solvers are used such as in the
FETI method, information about the inverse of the operator that were obtained during previous
iterations can also be used when solving for di�erent right-hand sides.
The FETI method is essentially a preconditioned conjugate gradient procedure on the dual

interface problem (39). The conjugate gradient iterations produce search directions that are
conjugate, namely which are orthogonal with respect to the system operator. Moreover, the
application of the system operator on these directions are computed during the iterations.
Therefore, if we store the directions z and FIz generated during the iterations in the al-
gorithm described in the previous section, the conjugate gradient algorithm can be started
by �rst searching in the subspace of the orthogonal basis generated earlier. Then the itera-
tion proceeds by ensuring the new search directions constructed are conjugate to the stored
ones.
Hence, the FETI algorithm for multiple right-hand sides can be summarized as follows.

Calling Z and X the matrices containing the previous search directions z and FIz, respectively:

1. Initialize

	00 =GI (GTI GI)
−1e

w00 = PT(d− FI	00)
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2. Projection
�= ZTw00

	0 =	00 + Z�

w0 =w00 − X�

3. Iterate
yn = PF̃−1

I wn

zn = yn − Z(X Tyn)

�n =
znTwn

znTFIzn

	n+1 =	n + �nzn

wn+1 =wn − �nPTFIpn

store zn in Z and FIzn in X

The part of the solution that is in the subspace of the previous search directions Z is
computed at nearly no cost at the beginning of the iteration. The CG procedure will iterate
only in the complementary subspace and thus converge to the solution faster. As a matter of
fact, if the previous search directions signi�cantly contribute to the new solution, convergence
will be achieved within a few iterations. This procedure is known as a reconjugasion or
projection and re-orthogonalization method.
The additional cost incurred by the projection and re-orthogonalization steps in the algorithm

for multiple right-hand sides is small as long as the number of stored directions is small
compared to the problem size. It is also possible to �x the number of stored directions although
this approach is not considered here. Hence, this technique will be very cost e�ective if all
the solutions can be well represented by a limited number of Krylov vectors generated in the
iterations. Further discussion of this method and of its application to multiple right-hand sides
can be found in References [20–23].

5. RESULTS

In this section, the convergence behaviour of the Uzawa and the FETI method for Stokes
�ow in a driven cavity is reported. The computational domain is a unit cavity with Dirichlet
boundary conditions for velocity. The velocity in the x direction is equal to one on one side
and is equal to zero everywhere else. The number of subdomains, Nsub, and the mesh size,
h, are related to a uniform triangular mesh as shown in Figure 1. The following stopping
criterion is used for the FETI method

‖wn‖2
‖d‖2 610

−8 (44)
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Table I. Number of outer Uzawa iterations and inner FETI iterations with and without the reconjugasion
method for a �xed number of subdomains.

H h H=h Outer Uzawa it. Total FETI inner it. Reconj. total FETI inner it.

1
4

1
8 2 18 217 95

1
4

1
12 3 19 252 107

1
4

1
16 4 19 269 109

1
4

1
20 5 19 271 113

1
4

1
28 7 19 291 115

1
4

1
32 8 19 291 118

1
4

1
36 9 19 291 118

1
4

1
40 10 19 293 119

1
4

1
48 12 19 311 119

where ‖wn‖2 is the projected residual at the nth iteration and ‖d‖2 is the right-hand side of
the FETI interface problem. The convergence criteria for the Uzawa solver is

‖wn‖2
‖w0‖2610

−6 (45)

where ‖wn‖2 is the pressure residual at the nth iteration. All results are obtained in MATLAB
6.0 environment.
The subsections that follow will numerically demonstrate that the number of outer and inner

iterations are numerically scalable with respect to the mesh size, h, and the subdomain size,
H . Results are tabulated to show the number of outer iterations, the total number of inner
iterations for the basic FETI method and the total number of inner iterations when reusing
the previously calculated search directions.

5.1. E�ect of the mesh size h

The e�ect of the mesh size h is investigated for a �xed number of subdomains. The number
of elements per side is increased from 8 to 48 leading to an increase in the ratio H=h, an
increase in the size of the interface problem and an increase in the size of each local problem.
Table I reports the number of iterations for a �xed number of subdomains, Nsub = 16. The
column ‘Outer Uzawa iterations’ reports the number of iterations of the solution of the dual
pressure problem. As expected, the number of iterations is constant for all problem sizes
because the Uzawa convergence is independent of the problem size. The next column shows
the total number of inner iterations for the basic FETI method and the last column shows
the total number of inner FETI iterations with the reconjugasion method. Note that the total
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Table II. Number of outer Uzawa iterations and inner FETI iterations for a �xed problem size.

H h H=h Outer Uzawa it. Total FETI inner it. Reconj. total FETI inner it.

1
3

1
60 20 19 247 85

1
4

1
60 15 19 312 121

1
5

1
60 12 19 341 155

1
6

1
60 10 19 335 190

1
10

1
60 6 19 308 246

1
12

1
60 5 19 293 245

1
15

1
60 4 19 272 240

inner iterations is the sum of all iterations over the 19 outer Uzawa iterations. A Dirichlet
preconditioner F̃−1

D is used for all FETI iterations. A small increase in the total number of
inner iterations is observed in both cases, nevertheless, this increase is smaller when the
reconjugasion is used.
From this table, the following conclusions can be made: �rst, the Uzawa solver in very scal-

able; second, the FETI solver is almost numerically scalable; third the reconjugasion method
cuts by more than half the number of total iterations.

5.2. E�ect of the subdomain size H

To numerically measure scalability with respect to the subdomain size, the number of sub-
domains is increased from 9 to 225 while keeping the size of the problem �xed. Clearly
the number of outer iterations stays the same because the number of pressure d.o.f. is the
same. From Table II, the reader may appreciate that the total number of inner iterations varies
slightly but still demonstrates scalability for large number of subdomains. Note that the re-
conjugasion method is more e�cient in reducing the number of inner iterations for a smaller
number of subdomains.
In the next set of simulations the number of subdomains and the problem size is increased

proportionally to investigate a scaled speed-up. Results from this simulation are reported in
Table III. As noticed before, the number of outer iterations in the Uzawa solver does not
change with the increase of problem size. Furthermore, the FETI solver requires the same
total number of iterations (293). The reconjugasion method requires slightly more iterations
as the problem size increases.

6. CONCLUSION

The method proposed herein improves a commonly used strategy, the Uzawa algorithm, for
solving the Stokes problem. The Uzawa’s algorithm decouples the velocity and the pressure
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Table III. Number of outer Uzawa iterations and inner FETI iterations for a �xed H=h.

H h H=h Outer Uzawa it. Total FETI inner it. Reconj. total FETI inner it.

1
4

1
20 5 19 271 113

1
5

1
25 5 19 304 146

1
6

1
30 5 19 293 177

1
7

1
35 5 19 293 209

1
8

1
40 5 19 293 225

1
9

1
45 5 19 293 233

1
10

1
50 5 19 293 239

1
12

1
60 5 19 293 245

associated with the Stokes problem. This algorithm requires the inversion of a Laplacian for
each velocity direction. A domain-decomposition method, the FETI method enhanced with a
reconjugasion approach is utilized to perform the inversions of the Laplacian operator. An
advantage of this approach is that pressure is approximated with continuous elements while
all calculations are based on the FETI domain decomposition approach. The above-mentioned
FETI approach has been shown to be numerically scalable, i.e. coarse mesh problems require
similar number of iterations as �ne mesh problems as well as small number of subdomains
require similar number of iterations as large number of subdomains. Numerical experiments
for a simple driven cavity �ow in a square show that the FETI method is indeed numerically
scalable and that the reconjugasion approach where the FETI search directions are reused can
reduce by three the number of inner iterations for small number of subdomains. This approach
can also be applied to unsteady �ows where Stokes like problems are solved at each time
step. This will be investigated in future papers.
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